Project Title	Funding	Institution	
Vicarious neural activity, genetic differences and social fear learning	\$53,942	Oregon Health & Science University	
Using induced-pluripotent stem cells to study Phelan McDermid Syndrome	\$0	Stanford University School of Medicine	
Understanding copy number variants associated with autism	\$250,000	Duke University Medical Center	
Training in translational social neuroscience	\$98,163	Emory University	
Tooth pulp as a source for neuronal precursor cells to study neurogenetic disorders	\$217,125	University of Tennessee Health Science Center	
The role of glutamate receptor intereacting proteins in autism	\$249,999	Johns Hopkins University School of Medicine	
Testing brain overgrowth and synaptic models of autism using NPCs and neurons from patient-derived iPS cells	\$0	University of California, San Francisco	
Testing brain overgrowth and synaptic models of autism using NPCs and neurons from patient-derived iPS cells	\$0	Salk Institute for Biological Studies	
Temporally controlled genetic rescue of Shank3 autism model	\$60,000	University of Texas Southwestern Medical Center	
Synaptic pathophysiology of 16p11.2 model mice	\$250,000	Massachusetts Institute of Technology	
Studying the neural development of patient-derived stem cells	\$62,500	Johns Hopkins University School of Medicine	
Studies of genetic and metabolic disorders, autism and premature aging	\$1,446,354	National Institutes of Health	
Striatal synaptic abnormalities in models of autism	\$381,600	University of Texas Southwestern Medical Center	
Small-molecule compounds for treating autism spectrum disorders	\$175,000	University of North Carolina at Chapel Hill	
Serotonin, autism, and investigating cell types for CNS disorders	\$235,867	Washington University in St. Louis	
Roles of oxytocin and vasopressin in brain	\$1,496,471	National Institutes of Health	
Role of UBE3A in neocortical plasticity and function	\$77,686	University of North Carolina at Chapel Hill	
Role of RAS/RAF/ERK pathway in pathogenesis and treatment of autism	\$0	New York State Institute for Basic Research in Developmental Disabilities	
Role of Caspr2 (CNTNAP2) in brain circuits - Project 2	\$0	University of California, Los Angeles	
Role of Caspr2 (CNTNAP2) in brain circuits - Project 1	\$79,675	King's College London	
Role of Caspr2 (CNTNAP2) in brain circuits- Core	\$89,999	Weizmann Institute of Science	
Role of cadherin 8 in assembling circuits in the prefrontal cortex	\$62,376	Mount Sinai School of Medicine	
Role of astrocytic glutamate transporter GLT1 in fragile X	\$0	Tufts University	
Reversing BDNF impairments in Rett mice with TRPC channel activators	\$256,375	University of Alabama at Birmingham	
Rat knockout models of ASD	\$0	Baylor College of Medicine	
Quantitative analysis of effect of autism-related genes on behavioral regulation	\$0	University of California, San Francisco	
PsychoGenics Inc.	\$312,375	PsychoGenics Inc.	
Preclinical therapeutic target validation of glutamate receptors in Shank3 models of autism	\$58,900	University of Texas Southwestern Medical Center	
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	University of North Carolina at Chapel Hill	
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	University of North Carolina at Chapel Hill	
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	University of North Carolina at Chapel Hill	

Project Title	Funding	Institution	
Preclinical Autism Consortium for Therapeutics (PACT)-Boston Children's Hospital Site	\$91,174	Boston Children's Hospital	
Preclinical Autism Consortium for Therapeutics (PACT)- Boston Children's Hospital	\$172,009	Boston Children's Hospital	
Preclinical Autism Consortium for Therapeutics (PACT) at Baylor College of Medicine	\$98,351	Baylor College of Medicine	
Preclinical Autism Consortium for Therapeutics (PACT)	\$200,894	University of California, Davis	
Preclinical Autism Consortium for Therapeutics	\$94,331	University of California, Davis	
Perinatal choline supplementation as a treatment for autism	\$0	Boston University	
Oxytocin receptors and social behavior	\$422,748	Emory University	
Optical imaging of circuit dynamics in autism models in virtual reality	\$0	Harvard Medical School	
Novel therapeutic targets to treat social behavior deficits in autism and related disorders	\$0	University of Texas Health Science Center at San Antonio	
Novel genetic models of autism	\$415,328	University of Texas Southwestern Medical Center	
Novel approaches to enhance social cognition by stimulating central oxytocin release	\$119,499	Emory University	
Neuroligin function in vivo: Implications for autism and mental retardation	\$373,032	University of Texas Southwestern Medical Center	
Neurobiological signatures of social dysfunction and repetitive behavior	\$374,400	Vanderbilt University Medical Center	
Neural and cognitive mechanisms of autism	\$0	Massachusetts Institute of Technology	
Modeling the serotonin contribution to autism spectrum disorders	\$222,643	Vanderbilt University Medical Center	
Misregulation of microtubule dynamics in Autism	\$60,000	Drexel University	
Mechanisms of stress-enhanced aversive conditioning	\$366,000	Northwestern University	
Mechanism and treatment of ASD related behavior in the Cntnap2 knockout mouse model	\$60,000	University of California, Los Angeles	
Investigating the role of CNTNAP2 gene in vocal learning in mutant songbirds	\$197,609	University of Massachusetts Medical School	
Investigating the effects of chromosome 22q11.2 deletions	\$150,000	Columbia University	
Integrative system biology of iPSC-induced neurons for identifying novel drug targets	\$56,900	Baylor College of Medicine	
Insight into MeCP2 function raises therapeutic possibilities for Rett syndrome	\$277,269	University of California, San Francisco	
Identifying therapeutic targets for autism using Shank3-deficient mice	\$466,151	Mount Sinai School of Medicine	
Identifying high-impact therapeutic targets for autism spectrum disorders using rat models	\$137,173	Mount Sinai School of Medicine	
Functional study of synaptic scaffold protein SHANK3 and autism mouse model	\$0	Duke University	
Functional consequences of disrupted MET signaling	\$0	Children's Hospital Los Angeles	
Functional analysis of rare variants in genes associated with autism	\$146,625	Yale University	

Project Title	Funding	Institution	
Exploring VIPR2 microduplication linkages to autism in a mouse model	\$60,000	University of California, Los Angeles	
Exploring the neuronal phenotype of autism spectrum disorders using induced pluri	\$180,391	Stanford University	
Examination of the mGluR-mTOR pathway for the identification of potential therapeutic targets to treat fragile X	\$0	University of Pennsylvania	
Evaluating hyperserotonemia as a biomarker of sensory dysfunction in autism spectrum disorder	\$28,600	Vanderbilt University	
Establishing next-generation tools for quantitative behavioral phenotyping	\$0	Harvard Medical School	
Effects of oxytocin receptor agonists in mouse models of autism spectrum disorder phenotypes	\$50,600	University of North Carolina at Chapel Hill	
Effects of chronic intranasal oxytocin	\$526,020	University of California, Davis	
Effect of abnormal calcium influx on social behavior in autism	\$62,500	University of California, San Francisco	
Dissecting the circuits underlying autism-like behaviors in mice	\$175,000	Massachusetts Institute of Technology	
Deficits in tonic inhibition and the pathology of autism spectrum disorders	\$62,500	Tufts University	
Control of synaptic protein synthesis in the pathogenesis and therapy of autism	\$148,914	Massachusetts General Hospital	
Comprehensive Phenotyping of Autism Mouse Models	\$416,495	The University of Pennsylvania	
Characterization of the schizophrenia-associated 3q29 deletion in mouse	\$528,118	Emory University	
Characterization of synaptic and neural circuitry dysfunction underlying ASD-like behaviors using a novel genetic mouse model	\$0	Duke University	
Characterization of brain and behavior in 7q11.23 duplication syndrome- Project 1	\$90,713	University of California, Davis	
Characterization of brain and behavior in 7q11.23 duplication syndrome- Core	\$164,853	University of Toronto	
Cerebellar signaling in mouse models of autism	\$125,000	Northwestern University	
Cellular and molecular pathways of cortical afferentation in autism spectrum disorders	\$45,000	University of Geneva	
Cell type-specific profiling for autism spectrum disorders	\$0	Columbia University	
Biomarker discovery for low sociability: A monkey model	\$62,500	Stanford University	
A novel translational model of autism spectrum disorder	\$267,750	Emory University	
Animal model of speech sound processing in autism	\$239,188	University of Texas at Dallas	
A mouse model of top-down interactions	\$0	The Rockefeller University	
Adverse prenatal environment and altered social and anxiety-related behaviors	\$15,000	University of Pennsylvania	
16p11.2 deletion mice: autism-relevant phenotypes and treatment discovery	\$200,000	University of California, Davis	
16p11.2 deletion mice: Autism-relevant phenotypes and treatment discovery	\$200,000	Stanford University	
16p11.2: Defining the gene(s) responsible (grant 1)	\$104,190	Cold Spring Harbor Laboratory	

Project Title	Funding	Institution
16p11.2: defining the gene(s) responsible	\$175,000	Cold Spring Harbor Laboratory